PROPOSITION DE SUJET DE M2

1. CANDIDAT ETUDIANT

Etudiant de Master 2

- Compétences en programmation obligatoire
- Compétences en modèles bayésiens de distribution conjointe des espèces (JSDM) fortement appréciées

2. ENCADREMENT

<u>Equipe d'accueil</u> : Clémence Epinoux (doctorante), Dr. Juan-Carlos Molinero & Dr Delphine Bonnet, UMR MARBEC

Contraintes particulières : Lieu de stage : Station IFREMER, Sète

<u>Durée du Stage</u> : 5 à 6 mois

3. DESCRIPTION DU SUJET

<u>Titre</u>: Dynamique des méduses à l'ère anthropocène : définition des zones sensibles et des tendances en mer Méditerranée

Problématique et objectifs :

La mer Méditerranée est l'un des hotspots de la biodiversité marine mais est aussi particulièrement menacée par des pressions anthropiques croissante, associées aux changements climatiques. Ces dégradations de l'écosystème ont été accompagnées d'une augmentation de la fréquence des proliférations de méduses depuis les années 1980, mettant ainsi en péril les services écosystémiques essentiels au bien-être humain et au fonctionnement de l'écosystème. Des séries de données à long terme sont disponibles grâce à des d'initiatives scientifiques citoyennes et à des études scientifiques, mais elles sont inégalement réparties dans l'espace et dans le temps, avec des niveaux d'effort et de biais différents. Afin de permettre la gestion des risques pour les services écosystémiques, ce projet vise à appliquer des modèles bayésiens de distribution conjointe des espèces (JSDM) afin d'intégrer ces sources de données hétérogènes. Les objectifs spécifiques sont les suivants : (i) explorer la dynamique saisonnière et interannuelle des espèces de méduses, (ii) évaluer le rôle du climat et des facteurs anthropiques dans la distribution des espèces, et (iii) étudier les schémas de cooccurrence des espèces et identifier les points chauds écologiques pertinents pour la prévision des risques et la gestion côtière.

<u>Matériels et Méthodes</u>: L'étude combinera les données issues de la science citoyenne et les données scientifiques issues de la surveillance des espèces de méduses dans toute la mer Méditerranée. Les covariables comprendront la température de surface de la mer, la

chlorophylle a, la salinité, les indices climatiques et les indicateurs de la pression humaine (densité de population côtière, effort de pêche, artificialisation des côtes). La modélisation commencera par des modèles linéaires généralisés à variables latentes (GLLVM) afin d'établir un cadre de référence. En fonction des progrès réalisés, des approches bayésiennes JSDM plus robustes seront explorées, notamment Hmsc, afin de modéliser conjointement les réponses des espèces et les schémas de cooccurrence. Ces modèles intégreront des processus d'observation (par exemple : zero-inflation, biais de détection) et des structures hiérarchiques afin de tenir compte de la variabilité spatiale, temporelle et au niveau des espèces. L'inférence a posteriori fournira des estimations crédibles des relations entre les espèces et l'environnement, des réponses conjointes et des cartes des hotspots. Les résultats devraient offrir à la fois des informations écologiques et des outils pratiques pour la prévision et la gestion des risques pour les gestionnaires côtiers.

4. GRATIFICATION DU STAGE

Gratification au tarif en vigueur, soit environ 4.35€/h (revalorisation nationale en janvier 2026)

5. RESULTATS D'APPRENTISSAGE

À l'issue de ce projet, l'étudiant aura :

- Acquis une expérience pratique dans le traitement d'ensembles de données écologiques hétérogènes, y compris des observations scientifiques citoyennes sujettes à des biais et des données issues d'une surveillance scientifique structurée.
- Développé des compétences appliquées en statistiques bayésiennes, en mettant l'accent sur les JSDM utilisant les GLLVM et éventuellement les JSDM (Hmsc).
- Renforcer leur capacité à traduire des résultats quantitatifs en connaissances écologiques et sociétales, notamment des cartes des risques et des résultats pertinents pour les gestionnaires.
- Acquérir des compétences de recherche transférables : pensée critique, rédaction scientifique et communication efficace de résultats complexes à des publics scientifiques et non spécialisés (par exemple, citoyens scientifiques, parties prenantes).